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Introduction

In this paper we will consider the plane and three-dimensional free
vibrations of elastic circular rings subjected to a uniformly distributed
radial load, and, in passing we will also consider the question of their
stability.

It is known that the behavior of a load in the process of deformation has
a8 marked influence on the value of the critical load, It is also to be
expected that the behavior of the load should have a serious effect on the
value of the natural frequencies. Therefore, the present study deals with
free vibrations for various cases of load behavior, namely, for the following
three possible cases (Fig. 1) frequently encountered in studies on stability,
(see /1, 2, 3, 4/ and others):

1) the load remains normal to the deflected axis of the bar;

2) the load remains normal to the undeflected axis of the bar, i.e.,

remains parallel to its initial direction;

3) the load remains directed toward the initial center of curvature of

the bar.

The first case occurs iIn the pressure of liquids or gases and refers to
a hydrostatic load. The force due to weight illustrates the second case.

The third case can occur for a wheel with many thin spokes when they are
under tension.

For denoting these cases in the plane or two-dimensional problem, we
shall use the Arabic numbers 1,2,3 ("Case 1," "Case 2," and "Case 3"y; the
same cases in the three-dimensional problem will be denoted by the Roman
numerals I, II, III ("Case I," "Case II" and "Case III").

The fundamental differential equations for the vibrations of an
unloaded circular bar were obtained by Lamb in 1888 /5/; the equations for

*Pranslated from "Problems of Dynamics and of Dynamical Strength."
Published by the Academy of Sciences of the Latvian SSR (Riga), issue L,
1956, pp. 49-T1.

NASA reviewer's note: Several obviously typographical errors in
equations in the original Russian text have been corrected by the
reviewer without comment.



a radially loaded circular bar for one case of slane vibrations (Case 1)
and two cases of three-dimensional vibrations (lases I and III) were obtained
by K. Federhofer in 1933 /6/. *

Fig. 1. The three cases of the load behavior.

In the present paper, similar equations are derived for Cases 2 and 3
of plane deformation and Case II of threc-dimensional deformation. 1In the
derivations we shall not take into account the effect of a transverse force,
the iInertia of rotation, and the change in length of the axis in the process .
of vibration. Moreover, we shall consider the 1imensions of the cross-~section
of the ring small in comparison with its radius.

The three differential equations of vibration obtained and the three -
Federhofer equations will be employed in this paper for investigating the free
plane and three-dimensional vibrations of a ringz; in the author's dissertation
/10/ (submitted March 26, 1956), these equations were used for investigating
the vibrations and stability of circular arcs.

1. FUNDAMENTAL DIFFERENTIAL EQUATIONS OF PLANE AND THREE-DIMENSIONAL
VIBRATIONS OF A RADIALLY LOADED CIRCULAR BAR
1.1 Projections of the Distributed Load Vector on the Coordinate Axes

We shall denote by the letter !o any point on the axis of the rod

before deformation (Fig. 1) and take the origin of a left-handed system of
rectangular coordinates X g2Z, to coincide with this point. We shall

restrict ourselves to the case where one of the principal central axes of the
cross-section lies in the plane of curvature of the bar. The z-axis is

taken tangent to the axis of the bar in the dir:ction of increasing arc
length s; the X" and Y -axes are taken along thie principal central axes

of inertia of the cross-section, the plane X% coinciding with the plane of

the bar. The Eo-axis will then be directed along the principal normal toward the

center of the rod and the zo-axis perpendicular to the plane of the rod
(binormal).

Simultaneously with these, we shall consider a left-handed system of
rectangular coordinates X, y, z connected with the axis of the bar after:
its deformation. As the origin we shall take the point M to which the
point M has gone over on the deformation of the rod. The z-axis is taken
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along the tangent to the axis of the bar in the direction of increasing arc;
the x-axis is taken perpendicular to the z-axis, passing the plane through
axis z' and tangent to the line into which the }v-axis has passed after the

deformation; the y-axis is directed normal to the xz-plane.
We also denote
P> the vector of the distributed load;

) Ey’ ) its projections on the axes X, ¥, Z;

R, the radius of the axis of the bar;
u,v,w, the projections of the displacement vector of a point on the axes

X Lo %,
«, ﬁo 7, the projections of the vector of rotation of the section on the axes
_x_on Zoi 205
Considering only small displacements, the following relations can be
derived for the various cases of behavior of the load in the process of
deformation (see /4/ p. 654):
l. p,=p=const p,=0 ]

2. p,=p=const p =pB (1.01)

3. p,=p=const p,=p (p—%)
L p,=0
L p,=—py (1.02)
L. p/=—p (Y+%)

1.2 Equations of Motion of an Arc Element
Iet us consider an element of a circular arc ds radially loaded by
an external force pds (Fig. 2). Setting up the equations of equilibrium

and ignoring quantities of the second order of magnitude, we obtain the
well-known equations ot Kirchhoff tor a thin curvilinear bar.

Fig. 2. Forces and moments acting on an element of
a ring.



Using the kinematic relations derived by Clebsch
2= (1.03)
pom gy (& + ), (1.04)

and taking into account the inertial forces (ignoring the inertia of rotation),
we obtain a system of six equations:

Qx+ (1 + Req) N: + Rp, —mR———o (1.05)
—Q:+ Ry, —"'R%"o (1.06)

My + RQs==0 (1.07)

Q,— RepN. + Ry, —mR-=-0 (1.08)
M4+ M, —RQ,=0 (1.09)
M, —M,=0 (1.10)

The Roman numbers here denote the partial derivatives with respect to
the angle ©® (for example),
GM,)
’
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vhere © is the variable central angle measured from the axis of
symmetry in the clockwise direction;

m, the mass of a unit length of the bar;

t, the time;

y—z’ the normal force;

95: and 97 the transverse forces;

M. =

and p_!_y, the bending moments; and

fp, §q, dr, the increments of the prin:ipal components of the curvature
and torsion of the bar in deformation.
In the derivation it was taken into accoun: that ds = Rd@. -
In subsequent derivations we express the increments of the principal
components of curvature and torsion and the elistic moments in terms of the
angles of turning and displacement.

6p=%(-—%‘v"+7) (1.11)

8q-kl—p' (112)

o\



5r=%(7'+%’01) (1.13)
Me=Br(— L 0" 44) (1.14)

= 2 + 1) (1.15)
M,=%(Y‘+%V') (1.16)

Here B = EI and B = gl-y are the principal flexural rigidities , and

€ =G6L thetorsmnal rigidity

Moreover, w2z make use of the condition of the noncompressibility of the
axis, which leads to the relation

u=uw'. (1.17)

1.3 The Plane Problem

The planc problem is defined by Equations (1.05) - (1.07). We
transform Eq. (1.05), representing the normal force in the vibration process,
as the sum:

N;=—pR+ N, (1.18)

where N is the increase in the normal force due to vibration.
Taking Eq. (1.12) into account we obtain in place of (1.05) - (1.07):

2 *
Q@ —pR+N — pRE' 4 Rp,—mR 34 =0 (1.19)
*w
— Qx4+ Rp.— ’"R?)F=O (1.20)
M+ RQ: =0 (1.07)

Eliminating the force N from Eq. (1.19) and (1.20) we have:

v
Q'+ Qe —pRE" + R(pi—p) + mR g @ —uh) =0 -(121)
From Eqs. (1.07) and (1.15) we obtain:

Qx=——(u"' + w'). (1.22)

Substituting Eq. (1.22) into (1.21) and making use of Eqs. (1.04) and
(1.17), we obtain the fundamental differential equation for the problem of
the general case of the behavior of a load.

@+ (24 58w o (14-8) v

N
+”;Rhata (" — w)‘*'BR“;(P,_PD'—"O

(1.23)

*NASA reviewer's note: The omission of the term NB in equa-
tion (1.19) implies that the subsequent development is applicable only
to cases for which inertia loads are small compared to the applied loads
(N «< pR); that is, the development is generally inappropriate for high
freouencv vibrations.



Substituting relations (1.01) into (1.23), we obtain the following
equations for the vibrations:

£ Lot 2:
or Tase o+ @+ 42) 0 + (1 + 2g9) @' + g +
mRt 0?

B, o_t?(w"_w)=0; (1.24)
for Case 3:
w4+ 2+ g w + (1 + 299 @' +
+%R_‘ ;f;(wu_w;:o. (1.25)
y
where . =p,R3 q’=P3R3.
® 8’ . B (1.26)

We shall henceforth denote the dimensionless magnitude q as the load
parameter.

1.4 The Three-Dimensional Problem

We shall derive the differential equations of vibration for Case II1
(Cases I and III have been considered by Federhofer). Transforming Eq. (1.08),
taking Iinto account Egqs. (1.18), (1.02), and (1l.11), we obtain:

v
Q,—pv' —mR 55 =0. (r2n*
Differeniiating Eq. (1.09) with respect to © and substituting the
values of Q y and Ez from Eqs. (1.27) and (1.10), we have an equation

containing two unknown functions, M, and V.

;g_*_M,_pR,,,n_,,,Raf;‘_; =0. (1.28)

To obtain one more equation, we solve Eq. (1.14) for Y and
substitute in the expression obtained into Eq. (1.16):

_Cl{Ry 1! m 1
M,_R[(me,+R v )+ﬁ'v'J. (1.29)

In order to eliminate the magnitude M from Eq. (1.28) and (1.29), we

differentiate Eq. (1.29) with respect to 6 and, taking into account Eq.
(1.10), obtain: 8. B
1 x x v ]
—Mit+ Mz —m(v + v )=0. (1.30)
This equation is valid for all three cases of load behavior under

consideration.
Adding Egqs. (1.28) and (1.30), we have:
i 3y
PR‘U"'FMRQ-EZ,E-I--?—,(WW-}-v")
Myst — oo

1+ &

(1.31)

¥*
NASA reviewer's note: The frequency restrictions mentioned in the
footnote on page 5 apply also to equation (1.27).

N\ g



Substituting Eq. (1.31) into Eq. IT.28), we obtain , after simplification,
an equation containing only one unknown function, v:

v+ @+ )" + (1 =g 0" +

02 1 d%
+mRt (g gav"—¢ Ga)=0. (1.32)
where
PR
du=-pg>» (1.33)
B
=7 (1.34)

We shall call the magnitude A the rigidity ratio.

1.5 General Solution of the Fundamental Differential Equations,

We shall demonstrate the method of solution of the fundamental differ-
ential equations using as an example Eq. (1.24). The remaining equations
are solved analogously. We seek the solution in the form of the product of
two functions, one of which depends only on 8, the other only on t:

w=w-f(f). (1.35)

In what follows the bar will denote functions depending only on the
angle ©.

Substitution of Eq. (1.35) into Eq. (1.24) after division by f(t), ylelds:

W+ (24 ¢) WV + (1 +2¢) @ +g@ _ " (O) (1.36)
mR* —, = t) -’ .
Satisfying Eq. (1.36) (for any @ and t) requiEes that each side be equal
to the same constant, which we shall denote by o
We then obtain the two equations:

O _ 1.37
[0 (1.37)
T4 @+ @)TY (1 +20)T + T _ (1.38)

Rim

ol —
B, @' —®
As we know, Eq. (1.37) has the solution:
f(t) = asin (of 4 a). (1.39)

It can now be seen immediately that the magnitude & 1is the frequency
of the vibrations. Equation (1.38) determines the forms of vibration of
the bar.

For the cases we are considering, the corresponding equations
(including the three equations derived by Federhofer /6/ for Cases 1, I, and
III can be written in the following form:



Case 1

p—

TN 4@+ )Y + (L + g — )@+ frw=0.
Case 2 (directly from Eq. (1.38)

W' 4+ (2+ QQ)TI’W + {1+ 242—f2):ﬂ' + (g2 + 1) w=0.

Case 3
T+ @+ @) B + (1 + 205 — f) W + fiw =0.
Case 1
M 4 @) vV + A+ —f) o+ =0
Case 11
4 (24 g) TV + (1 —Ag, — fi) O + Af v =0
Case II1
vV (2 +qy) vV 4+ (1 + gy — M —f) ol 4
+ 2 fiu— qm)?: 0.
Here
R ’
e T I S

mR* mR¥

mR¢
fi= B, of;  Ju =g, “u S = B_x“’?n-

We shall henceforth denote the dimensionless magnitude £ as the

frequency parameter.

(1.

(1.

(1.

(1.

(1.

(1.

(1.

.

40)

41)

42)

43)

44)

45)

46)

47)

By analogy with Eq. (1.26), we set g =Bl_’?_a , and by analogy with

R PR l B,

Eq. (1.33), 9,= —K’ g = '*_B;—'

The part{cular integral of Eqs. (1.40) - (1.45) we take in the form

a sin (n 6 4 a).
We then obtain the following characteristic equations:

Case 1
nf—Q2+q)rt+ QA +q—rf)i*—f,=0,
Case 2

nt—(2+4qgdnt+ (1 +2¢,—f5)n* —(fa+ 99 =0.

(1.

48)

(1.49)
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Case 3
s —(2+ q) 7+ (1 +2¢— f) i’ —f1=0. (1.50)
Case I
nt —(2+ g yr+ (1 + ¢, —f,)i* —1f;=0. (1.51)
Case II
nt —(2+ q )t + (1 —Agyy — fi)) ni* —Af,, =0. (1.52)
Case III

n* —(2+ q,)r*+ Q0+ gy— My—fi) 7 — Ay =0 (1.53)

The general integral of the fundamental differential equations (1.40) -
(1.42) has the form:

3
w= 2" (Ascos m8 + B, sin m8), (1.54)

[ £ 01

vwhere + n, 122, 1_53 are the roots of che corresponding characteristic

equations, and él’ 52, A, 21, §2, 23 are the integration constants. The

general integral of Eqs. (1.43) - (1.45) for v has the same form.

2. VIBRATIONS AND STABILITY OF THE RING
2.1 Determination of the Natural Frequencles of the Vibrations

For a ring, the frequency parameters are easily determined directly from
the characteristic equations (1.48) - (1.53). Since the magnitude n in these
equations represents the number of waves for one passage aroung the ring,
which i{s closed, this number must be an integer (n = 2,3,4,...).

The frequency parameters are therefore:

Case 1
mrP—1@n—1—
fim= ,,1(_';_, ), (2.01)
Case 2
(?— 1) (1 — g,)
fa= B 1 : (2.02)
Case 3
3[(nd — 1) — (7 — 2
fs=n [(ﬂ ,)12_'_(1” )ql]’ (2.03)
Case 1

(=1 —1—g)
fi= Y . (2.04)
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while the vertical component, on the contrary, acts to remove the half-ring
from its initial position. From this point of view, the half-ring is most
easily deformed in Case II, where there {s no restoring horizontal force, and
it 1s deformed with most difficulty in Case I, where the restoring horizontal
force 1s relatively larger than in the other cases. It is well known that
the more flexible the system, the more easily it is deformed and the lower
its frequency.

Ed
MO\ o

#Jn J

1 ]

Fig. 3. Effect of load behavior on the yielding of a
half-ring.

It is natural, therefore, that under otherwise equal conditions Case II has
the lowest frequency and Case I, the highest.

2.2 Determination of the Critical Loads

A compressive load naturally lowers the frequency of the free vibrations
and reduces it to zero when the load attains a csritical value. On this
basis it is easy to determine the values of q, setting f = 0 in Eqs. (2.01)
- (2.06).

We denote by r that value of the dimensionless load parameter for which
the load attains the critical value,.

o Ppu?“
b =75, (2.13)
PR
sp [
= (2.14)

This value is called the coefficient of stability. Equation (2.13)
refers to Cases 1, 2, and 3, and Eq. (2.14) to Cases I, II, and III.

From Eqs. (2.01) - (2.06) it is easy to obtain the coefficients of
stability for all the cases of load behavior considered.

Qo =n—1; (2.15)

[—_
qzu'_” ’

_ (B—=1p
T on=2 (2.17)

(2.16)

q3 2%
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gy = —1; (2.18)
_ (n*— 1)
S (2.18)
(nt—1)
Ime= "y - (2.20)

Comparing the values obtained for the coefficifents of stability, it can
easily be seen that

G <@..<ds... 1.¢0 p_<p,_<p,..,
and

Me<ma<he 1.0, Pioc <Pt <Py

These results agree with the results obtained above for the frequencies;
namely, Iin the plane problem the smallest critical load is hydrostatic,
and in the three-dimensional problem it is the load which does not vary its
direction in the process of deformation.

From Eqs. (2.15) - (2.20) it follows also that for plane vibrations the
difference between the stability coefficients for the second and first cases
of load behavior does not depend on the number of waves and is always equal
to unity:

q?m —qlm=]’

The same difference for the third and second cases of load behavior

depends on the number of waves;
1
qag,_—qz“:nﬂ__?"

2.3 Comparison of the Characteristics of Plane and Three-Dimensional

Vibrations of a Ring for Different Cross-Sectional Shapes.

2.3.1 Circular, Tubular, and Square Cross-Section.

For comparison of the characteristics of the vibrations of rings of
circular, tubular, and square cross-sections, it is convenient to use a
graph showing the dependence of the frequency parameter f on the load
parameter q. From Eqs. (2.01) - (2.06) it follows that for a ring this
dependence {s linear and {s represented by a straight line.

Computing the frequency parameters of an unloaded ring from Eqs.

(2.07) and (2.08) and the stability coefficients from Egs. (2.15) - (2.20),
taking n = 2 and n = 3, we construct a graph (Fig. 4) for the circular or
tubular section for which the rigidity: ratio is:

. cC G-I,
The Polsson coefficient will be taken here and in what follows as
k=025,
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Then for the circular and tubﬁlar sections, A =125,

It 1is seen from the graph that for a ring of circular or tubular section,

for any number of waves and any behavior of the load in the process of
deformation,

/;p<fpl, i.e. w,—,,(w;,/,

s
5760 plane problem 3-dim, problem
5§20 ne2| ne3| n=4 ne2| ned | ned
£ 1721576 |21176] | £, | 6,86|56.20 20870
501 9,130 80| 1500| | 9. | 300| 8,00 1500
q, | 40| 90| 1600 |9,]1.71| 6,24| 13,04
q, | 45| 91| 1607} |9.|228] 702| 13,91
40 C
301
201
10 1
722
666!!5§§§§E§;353;==:\A

171228 30 40 4S5 624 702 80 90 9% Y
Fig. 4. Vibrations of a riag (circular section).

Thus, in the case considered, it i{s the thcee-dimensional form of
vibrations that is of practical interest.

The same conclusion can also be drawn as rz2gards a ring of square cross-
section, for which the rigidity ratio is:

1
EL__ Tétﬂ# = 1.48
G-I, O04E-0.1414 7
For the sections considered, the differenc2 between the frequencies

A=

ngl and 6’:p for an unloaded ring 1is very snall. In fact, according to

Eqs. (2.07) and (2.08),

n U
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ﬁf!__”l4”l
iff) w1
Since for the circular and tubular sections A . 1.25 and for the
square section A = 1,48, we find that even for n = 2, the smallest number of
waves, ;
o 41
osp n’+l~

2.3.2 Rectangular Section
a) Ratlo of Frequencles of Plane and Three-Dimensional Vibrations
of an Unloaded Ring.
Denote the dimensions of the section in the plane of the ring by b and
the dimensions of the section perpendicular to the plane of the ring by h,
(Fig. 5).

>
»

Fig. 5. Cross-Section of Ring.

According to Eqs. (2.09) and (2.10) the ratio of the frequency parameters

of an unloaded ring for plane and three-dimensional deformations fer n = 2
equals:

A 441
LT

Taking 1nto account Eqs. (1.46) and (1.47) and also the fact that I =
bh /12 I = hb /12, we obtain;:

(%)2%=i (2.21)

In order to determine for what ratio of the cross-section sides the
frequency of the natural three-dimensional vibrations will be equal to the
frequency of the natural plane vibrations, we substitute in Eq. (2.21)

Wpt = Wy

We then obtain

lI

(T) % (2.22)

The value of the stiffness ratio A as a function of the ratio of the
sides h/b is determined for M = 0.25 from the following equations:
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*=gaw Bl (2.23)

7~=m, (2.24)

where k'is a coefficient depending only on the ratio h/b, (taken from /9/,
table on p. 44). For intermediate values of h/b, the coefficient k' is
determined by linear interpolation,
Computations show that Eq. (2.22) is satisfled for h/b = 1.056, when
A= 1.573.
For sections for which h/b > 1.056, W SP ey pl
o ]

no A

while for sections

for which h/b < 1.056,  °P ¢o PL.
= o °

b) Comparison of Cases 1 and I.
The ratio of the frequency parameters, Iin agreement with Eqs. (2.04)
and (2.01), for n = 2 equals:

S 56—aq)

h @G+2»@—uv) )
Then B

y 5(317;‘—%)

WS @FNE—a)

Since Bx/By =(h/b)2, then in the case in which o, =, , this equation

assumes the form
@+ 6—q=5[3(; —a]
whence

12-;-31—15(%)"l

h=—"""T7—_1 (2.25)

This equation represents a curve correspond.ng to the equality of the
frequencies for plane and three-dimensional vib:ations (for n = 2 and
M= 0.25). This curve is shown in Fig. 6a.

It can be seen that for rings subjected to a4 hydrostatic load, when
h/b € 1 the frequency of the three-dimensional vibrations is lower than the
frequency of the two-dimensional vibrations, whi.le for h/b 3 1.056 the
reverse is true. In the region 1.000<h/b < 1.056 the frequencies of the
three-dimensional vibrations may be both lower and higher than the
corresponding frequencies of the plane vibrations (depending on the magnitude
of the load).

The upper point of the curve determines that ratio of the sides of the
cross-section for which the critical loads corresponding to the plane and
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9
kLA MMM ————= '::
T
| E =
o lHIEE—=——
9
4OTTF(””- = -
<o || & Sm =
b : =1
1056 1767 b
%,
P S—
l.h—“i
Wy < WIS @, <w, =
c) l — = h
1056 1367 b

Fig. 6. Frequency regions of three-dimensional
and plane vibrations of a ring.

three-dimens{onal forms of the loss of stability are the same.*

For h/b ¢ '1 Prer € Pler

For h/b > 1 plcr < l'.‘Ic:r

¢) Comparison of Cases 2 and II.

In agreement with Eqs. (2.05) and (2.02), the ratio of the frequency
parameters for n = 2 1is:

o _ 2009—g,(4+ ]
h 9(4+2N(4—gqy)

whence B
w2 20 [9*"""]0(4""'1)]
_n B,
©] 9(4+2)(4 —qy)
Equating é)n with wz, we obtain the equation:

94+ (4 — =20 [9(5) '~ qua + 0.

* In fact, the coefficients of stability for n = 2, according to Egs.
(2.15) and (2.18), are q = 3,.0; q = 3.0.
f

From Egqs. (2.13) and (2.125 1t followS that p,m=3.07‘,-{-; p,m=3_o%".,

The last magnitudes are the same for a square cross-section,
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whence it follows that

h 2
‘80('5) 36
%= ran— 1 (2.26)

Equation (2.26) describes the curve of equal frequencies shown {n Fig. 6b.
As can be seen from the graph, in this case of the behavior of the load when
h/b € 1.056, the frequency of the three-dimensional vibrations is always
lower than the frequency of the plane vibrations. while when h/b » 1.767,
the reverse is true. In the region 1.056 < h/b <1.767, the frequencies of
the three-dimensional vibrations can be both lower and higher than the
frequencies of the corresponding plane vibrations (depending on the
magnitude of the load).

Here the top point of the curve shows likewise that for h/b = 1.767,

Py cxa=Pu o

d) Comparison of Cases 3 and III.
According to Eqs. (2.06) and (2.03), the ratio of the frequency parameters
for n = 2 equals:
;fﬂ._ 15[12—¢q,, 4 + )]
fs 4(9—2q) (4 +4) ’

w?

whence, for the ratio of the squares of the frequencies:
3.75[95‘—(4 + l)qal
Yin _ B,
o} 44+29—2¢)

Taking o = w_, we have

II1 3
37512 (%)~ (4 + D ga) = (4 + 0 9—240).

whence

A\l
25.714 (7)
__?tFif__-’5J43' (2.27)

From the graph (Fig. 6c), it follows that for rings in the third case of
load behavior, when 312_‘( 1.056, the frequency of the three-dimensional
vibrations is always lower than the frequency of the plane vibrations,
while for h/b 7 1.567, the reverse is true.

In the region 1.056 < h/b < 1.567, the frequency of the three-dimensional
vibrations can be both lower and higher than the frequencies of the
corresponding plane vibrations, depending on the magnitude of the load.

Analogously, as in the preceding case, it is easy to show that for
h/b = 1,567,

Gy ==

Pyon =Py cn-

2.4 Application of the Fundamental Differential Equations of
Vibration of a Circular Bar to the Computation of the Free
Yibrations and Stability of Arcs .

N
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Equations (1.40) - (1.45) were employed by us also for investigating the
problem of the free plane and three-dimensional vibrations of loaded flexible
nonhinged and two-hinged arcs /10/, both the exact and approximate solutions

being obtained.
,\

“theor

“arp

o F IR | 3 :

Fig. 7. Experimental and theoretical frequencies
of the natural vibrations of a hingeless arc.

From the results obtained, we took for experimental check the case of
three-dimensional vibrations of a hingeless arc where the load in the process
of deformation remains directed toward the center of the initial form of
the arc (Case III).

It was found that the results of the approximate theoretical computation
were higher than the experimental results by 7.7 - 11% (Fig. 7).

Two reasons can be given for such a discrepancy.

1. The theoretically computed frequencies were obtaimed by the Bubnov-
Galerkin method, which always gives higher values for the first frequency.

2, The experimentally obtained frequencies are somewhat lower on
account of a certain ylelding of the clamps.

All this permits us to conclude that the accuracy of the approximate
theory 1is sufficient for practical purposes.

CONCLUSION

In the present paper the problem of the free plane and three-dimensional
vibrations of loaded flexible circular rings is investigated. The fundament-
al results obtained are the following:

1. Differential equations were obtained for a radially loaded circular
bar for three cases of the behavior of the load in the process of deformation
(Cases 2,3, and 1I).

2, It was established that the behavior of the load had a considerable
effect on the frequency parameter and on the coefficient of stability. It
was proven that the following inequality holds for a ring:

wpp < Oprp < Pp
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3. It was established that for rings of circular, tubular, and square

cross-sections in any of the three cases of lcad behavior considered, the
n-th natural frequency of the three-dimensional vibrations is always lower
than the corresponding n-th frequency of the plane vibratioms.

For rings of rectangular section in these cases of load behavior, the

regions were determined in which the lowest frequency of the natural
vibrations in plane deformation is lower or higher than the corresponding
frequencies for three-dimensional deformation.

8.

9.

10.
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